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We consider a small metallic particle �quantum dot� where ferromagnetism arises as a consequence of Stoner
instability. When the particle is connected to electrodes, exchange of electrons between the particle and the
electrodes leads to a temperature- and bias-driven Brownian motion of the direction of the particle magnetic
moment. Under certain conditions this Brownian motion is described by the stochastic Landau-Lifshitz-Gilbert
equation. As an example of its application, we calculate the frequency-dependent magnetic susceptibility of the
particle in a constant external magnetic field, which is relevant for ferromagnetic resonance measurements.
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I. INTRODUCTION

The description of fluctuations of the magnetization in
small ferromagnetic particles pioneered by Brown1 is based
on the Landau-Lifshitz-Gilbert �LLG� equation2,3 with a phe-
nomenologically added stochastic term. This approach has
been widely used: just a few recent applications are studies
of the dynamic response of the magnetization to the oscilla-
tory magnetic field,4–7 a numerical study of ferromagnetic
resonance spectra,8 a study of resistance noise in spin
valves,9 a study of the magnetization switching and relax-
ation in the presence of anisotropy and a rotating magnetic
field,10 and calculations of the power spectrum of magneti-
zation fluctuations.11,12 Typically, the treatment is based ei-
ther on direct numerical integration of the stochastic LLG
equation5,7,8,10,13 or on solution of the associated Fokker-
Planck equation for the magnetization probability
distribution.1,4,6,10,11

In equilibrium the statistics of stochastic term in the LLG
equation can be simply written from the fluctuation-
dissipation theorem.1 However, out of equilibrium a proper
microscopic derivation is required. Microscopic derivations
of the stochastic LLG equation out of equilibrium, available
in the literature, use the model of a localized spin coupled to
itinerant electrons,14–17 or deal with noninteracting
electrons.18 In this model the derivation of the Fokker-Planck
equation can be done using the standard density matrix
formalism.19 To put our work in the general context, we do
this simple exercise in Appendix A. In contrast to the model
of a localized spin, our main interest is a purely electronic
system where the magnetization is a collective slow degree
of freedom arising as a consequence of the Stoner instability.
Our derivation has certain similarity with that of Ref. 20 for
a bulk ferromagnet, where the direction of magnetization is
fixed and cannot be changed globally, so its local fluctuations
are small and their description by a Gaussian action is suffi-
cient. The effect of electric current on itinerant electron fer-
romagnet near the Stoner instability was recently addressed
in Refs. 21 and 22. The bulk situation should be contrasted to
the case of a nanoparticle where the direction of the magne-
tization can be completely randomized by the fluctuations, so
that the particle is not ferromagnetic in the strict sense �the

long-time average of the magnetic moment vanishes�. This
situation is often called “superparamagnetism.” From the for-
mal point of view, as the overall variation in the magnetiza-
tion vector is large, the effective action describing its slow
motion is essentially non-Gaussian, and this is the situation
we are interested in. The bias-driven Brownian motion of the
magnetization with a fixed direction �due to an easy-axis
anisotropy and ferromagnetic electrodes� has been also stud-
ied in Ref. 23 using rate equations, which corresponds to a
fully quantum treatment of the problem. In contrast, our
treatment is quasiclassical, which the most natural language
when the total spin of the particle is large.

We assume that the single-electron spectrum of the par-
ticle, which is also called a quantum dot in the literature, to
be chaotic and described by the random-matrix theory.24,25

To take into account the electron-electron interactions in the
dot we use the universal Hamiltonian,26 with a generalized
spin part corresponding to a ferromagnetic particle. Electrons
occupy the quantum states of the full Hamiltonian and form
a net spin of the particle of order of S0�1; throughout the
paper we use �=1. The dot is coupled to two leads, see Fig.
1, which we assumed to be nonmagnetic. The approach can
be easily extended to the case of magnetic leads. The number
Nch of the transverse channels in the leads, which are well
coupled to the dot, is assumed to be large, Nch�1. Equiva-
lently, the escape rate 1 /� of electrons from the dot into the
leads is large compared to the single-electron mean level
spacing �1 in the dot. In this situation one can disregard the
electron-electron interaction in the charge channel, whose
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FIG. 1. �Color online� Device setup considered in this work: a
small ferromagnetic particle �quantum dot� coupled to two nonmag-
netic leads �see text for details�.
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effect �weak Coulomb blockade� is suppressed for Nch�1.25

The coupling to the leads is responsible for tunneling pro-
cesses of electrons between states in the leads and in the dot
with random spin orientation. As a result of such tunneling
events, the net spin of the particle changes. We show that this
exchange of electrons gives rise both to the Gilbert damping
and the magnetization fluctuations in the presented model,
and under conditions specified below, the time evolution of
the particle spin is described by the stochastic LLG equation.
In equilibrium the magnitude of these classical fluctuations is
proportional to the system temperature T, by virtue of the
fluctuation-dissipation theorem. Out of equilibrium �i.e.,
when a finite bias voltage V is applied between the contacts�,
the fluctuations are determined by the effective temperature
Teff, the characteristic energy scale of the electronic
distribution function given by a combination of T and V
�the Boltzmann constant kB=1 throughout the paper�.

We study in detail the conditions for applicability of the
stochastic approach. We find that these limits are set by three
independent criteria. First, the contact resistance should be
low compared to the resistance quantum, which is equivalent
to Nch�1. If this condition is broken, the statistics of the
noise cannot be considered Gaussian. Physically, this condi-
tion means that each channel can be viewed as an indepen-
dent source of noise, so the contribution of many channels
results in the Gaussian noise by virtue of the central limit
theorem if Nch�1. Second, the system should not be too
close to the Stoner instability: the mean-field value of the
total spin S0��Nch. If this condition is violated, the fluctua-
tions of the absolute value of the magnetic moment become
of the order of its average. Third, S0

2�Teff /�1. Otherwise, the
separation of the degrees of freedom into slow �the direction
of the magnetic moment� and fast �the electron dynamics and
the fluctuations of the absolute value of the magnetic mo-
ment� is not possible. This third condition, however, turns
out to be weaker than Teff�S0�1, which ensures that the
magnetic moment is not destroyed by thermal fluctuations
�i.e., the effective temperature must be below the Curie tem-
perature�.

Effects of spin-orbit interaction are beyond the scope of
the present work. Spin-orbit interaction on the atomic length
scale may lead to an intrinsic magnetic anisotropy of the
particle; this effect can be easily incorporated by introducing
the corresponding term in the universal Hamiltonian. At
longer scales �of the order of the particle size�, the spin-orbit
interaction can modify the character of electron collisions
with the walls as well as collisions between electrons, which
can be an additional source of magnetization fluctuations and
Gilbert damping. Incorporation of these effects is not trivial,
but seems feasible within the technical framework presented
here. These effects deserve a separate study.

Finally, as an application of the formalism, we consider
the magnetic susceptibility in the ferromagnetic resonance
measurements, which is a standard characteristic of magnetic
samples. Recently, progress was reported in measurements of
the magnetic susceptibility on small spatial scales in re-
sponse to high-frequency magnetic fields.27 Measurements of
the ferromagnetic resonance were also reported for nanopar-
ticles, connected to leads for a somewhat different setup in
Ref. 28.

The paper is organized as follows. In Sec. III we intro-
duce the model for electrons in a small metallic particle sub-
ject to Stoner instability. In Sec. IV we analyze the effective
bosonic action for the magnetization of the particle. In Sec.
V we obtain the equation of motion for the magnetization
with the stochastic Langevin term, which has the form of the
stochastic Landau-Lifshitz-Gilbert equation, and derive the
associated Fokker-Planck equation. In Sec. VI we discuss the
conditions for the applicability of the approach. In Sec. VII
we calculate the magnetic susceptibility from the stochastic
LLG equation.

II. QUALITATIVE PICTURE AND MAIN RESULTS

We consider a metallic nanoparticle containing a large
number of electrons. When the Stoner criterion is satisfied,
i.e., the electron-electron interaction in the spin channel is
ferromagnetic and sufficiently strong, the ground state of the
electrons in the particle corresponds to a nonzero total spin
S0�1. In the magnetically isotropic case, which we focus
on, the spin can point in any direction, defined by a unit
vector n. The nonzero total spin can be seen to be due to an
internal magnetic field �which can be also called magnetiza-
tion field or exchange field� which shifts the energy levels of
individual electrons with spins parallel/antiparallel to n
down/up by an amount h0. If �1 is the average spacing be-
tween the single-electron levels, there are 2h0 /�1 more elec-
trons with spins along n than those with opposite spins.
Thus,

h0 = S0�1. �2.1�

The large but finite degeneracy of the ground state, 2S0+1
�1, is reminiscent of the Goldstone mode for an infinite
bulk ferromagnet.

At a finite temperature T �not too high so that the average
of the electron spin is still large, T�h0�, the electronic state
will evolve. It is clear that even at lowest temperatures the
system is energetically allowed to explore the
�2S0+1�-degenerate ground-state manifold. Representing the
large spin quasiclassically, this dynamics can be viewed as
that of the direction of the magnetic moment, n�t�. We as-
sume that the magnetic state of the particle is completely
described by the total spin, the energy of spatially inhomo-
geneous spin configurations significantly exceeding all other
relevant energy scales in the problem, such as the mean en-
ergy spacing in the particle, temperature or electric bias be-
tween the leads. In other words, we restrict our attention to
the spin wave with zero wave vector, the modes with finite
wave vectors having very high frequencies due to the small
size of the particle.

The single-electron dynamics is assumed to be dominated
by the exchange of electrons between the particle and the
leads. This exchange is quantified by �, the average time
during which electron stays inside the particle before escap-
ing into the leads. Separating the contributions of the left ��L�
and right ��R� leads, we express them in terms of the trans-
parency coefficients Tn for each channel of the leads con-
nected to the particle, 0�Tn�1:
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�L�R�
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n�L�R�

Tn�1

2	
. �2.2�

Our main assumption is 1 /���1, which is the case when
many channels, Nch�1, have transparencies Tn�1. This as-
sumption allows us to neglect the electron-electron interac-
tion in the charge channel, whose main effect, Coulomb
blockade, is suppressed as �1 /Nch. We also neglect electron-
electron collisions inside the particle, whose rate29 is much
smaller than the electron escape rate 1 /�. Under these as-
sumptions the dynamics of the particle magnetic moment is
governed by the exchange of electrons between the particle
and the leads.

The analysis of this paper does not assume the system to
be thermal equilibrium and is valid for arbitrary distribution
functions of electron in the leads, which determine the dis-
tribution function in the particle. Our focus is when two
leads have the same temperature but different chemical po-
tentials, corresponding to a finite voltage bias U. In this case
the electron distribution in the particle is strongly different
from the equilibrium Fermi-Dirac form and cannot be char-
acterized by a definite value of temperature. Nevertheless, it
turns out that there exists a single energy scale determining
the fluctuations, which can thus be called an effective tem-
perature:

Teff � T + 
� eU

2
coth

eU

2T
− T� , �2.3�

where 
 is the “Fano factor” of the particle


 =
�2

�L�R
+

�3�1

2	�R
2 �

n�L

Tn�1 − Tn� +
�3�1

2	�L
2 �

n�R

Tn�1 − Tn� .

�2.4�

At U=0 this expression gives Teff=T and all our findings
recover the results for equilibrium. At strong bias eU�T,
when the spin fluctuations originate from the shot noise of
electric current, it gives Teff= �
 /2�eU.

Since each electron enters or leaves the particle in a ran-
dom manner, and in each event the total spin change is much
smaller than the spin itself, the dynamics of the spin will be
diffusive. The corresponding diffusion coefficient can be es-
timated from the following simple argument. Significant
fluctuations in the occupations of single-electron levels occur
only within energy window Teff near the Fermi energy. The
number of single-electron levels in this window is Teff /�1.
Since a single electron changes the direction of the total spin
typically by an angle ���1 /S0, the variance of the devia-
tion angle for the total spin is 	��2
��1 /S0�2�Teff /�1�. This
deviation is accumulated during the typical lifetime of
electrons in the particle, �. The corresponding diffusion co-
efficient can be estimated as 	��2
 /��Teff / �S0

2�1��. At
Teff��1, the same estimate is valid, but the ratio Teff /�1 has
the meaning of the probability of tunneling.

If an external magnetic field B is applied, the ground-state
degeneracy is lifted, the additional energy being −g
BS0B ·n,
where g is the Lande factor for electrons in the nanoparticle,
and 
B=e /2mec is the Bohr magneton. In this case electron
exchange between the particle and the leads results in the

relaxation of the spin direction toward the lowest energy
state with n along B, referred to as the Gilbert damping. The
relaxation rate can be estimated as follows. Suppose that
initially n�B. This means that there are as many electrons
with spins along B as with spins opposite to B. At the same
time, the single-electron levels are shifted by �g
BB /2 for
the two spin projections, which results in a nonequilibrium
state with the difference of the Fermi levels equal to g
BB.
Because electrons in the leads are not polarized, the differ-
ence in the number of incoming and outgoing electrons can
be estimated as g
BB /�1. The orientation of the total spin
changes by an angle ���1 /S0 per electron, or by
���g
BB / �2�1S0� during time �. Thus, the damping rate
can be estimated as g
BB / �2S0�1��. The investigation of the
damping of magnetic moment of ferromagnetic particles due
to electron exchange with the leads was presented previously
in Ref. 30 and provided the expression for the Gilbert damp-
ing rate, consistent with our estimate.

In the main part of the paper these qualitative arguments
are put on formal grounds. As a result, we arrive at the
Fokker-Planck equation for the distribution function P�n� of
the orientations n of the particle magnetic moment:

�P
�t

= g
B
�

�n
· �− �n � B
P +

�n � �n � B�

2S0�1�

P� +
1

T0

�2P
�n2 .

�2.5�

Here the first term on the right-hand side corresponds to the
precession of magnetic moment in the direction perpendicu-
lar to the total magnetic field w+B, while the second term
describes the Gilbert damping of magnetic moment, which
tends to align the magnetic moment along the magnetic field.
The last term represents diffusion, with the time constant T0
defined as

T0 =
2S0

2�1�

Teff
. �2.6�

In the literature T0 /2 is often called the Néel time.
The Fokker-Planck equation, Eq. �2.5�, is equivalent to

the following Langevin equation �ṅ stands for the time de-
rivative�:

ṅ = g
B�n � �w + B�
 −
g
B

2S0�1�
�n � �n � �w + B�
� .

�2.7�

This equation corresponds to the LLG equation2,3 for the
direction n of the macroscopic magnetic moment in a mag-
netic field: the first term on the right-hand side of Eq. �2.7�
describes the precession, the second term describes the Gil-
bert damping. The magnetic field on the right-hand side of
Eq. �2.7� is represented as a combination of an external de-
terministic field B and a stochastic field w. The stochastic
field is due to the interaction in the spin channel between
electrons entering/leaving the particle and the rest of elec-
trons, w�t� can be considered as a �-correlated Gaussian field
distributed isotropically in the tangent plane to a unit sphere.
Its statistics is fully determined by the pair correlator which
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depends on the direction of magnetic moment n�t� and has
the form

	wi�t�wj�t��
 = �Teff�1
�ij − ni�t�nj�t�

�2h0��2 + 1
��t − t�� . �2.8�

The conditions of applicability for the stochastic LLG equa-
tion, Eq. �2.7�, and the Fokker-Planck equation, Eq. �2.5�,
can be summarized as follows:

�i� The fluctuations of the absolute value of the total spin
are assumed to be small compared to its average S0. This is
valid when

S0
2 �

1

��1
ln�ET�� , �2.9�

where ET is the Thouless energy of the particle. For a particle
of the size L and such that electron motion inside it is bal-
listic with the Fermi velocity vF, ET�vF /L.

�ii� The Gaussian approximation for the stochastic field is
effectively a consequence of the central limit theorem.
Namely, the noise is contributed by many independent pro-
cesses occurring in each conduction channel between the
particle and the leads. This requirement can be written as

1

�1�
� 1. �2.10�

�iii� The Markovian approximation for the stochastic field
w�t� is valid when its correlation time, 1 /Teff, is shorter than
the typical time scale of the evolution:

1

Teff
� T0. �2.11�

This inequality can be rewritten as S0
2�1 / ��1��, which is

weaker than Eq. �2.9�. Notice that the regular precession in
the magnetic field with frequency g
BB is removed by a
choice of the rotating coordinate system and does not restrict
the applicability of the Markovian approximation.

�iv� The time scale of the evolution, T0, must be longer
than �. This requirement translates into

S0
2 �

Teff

�1
. �2.12�

This condition is weaker than Teff�S0�1, necessary to have a
nonzero magnetic moment at all.

In the final part of the paper we apply the Fokker-Planck
equation to calculate the linear magnetic susceptibility of the
nanoparticle, describing the response to a weak probe mag-

netic field B̃�t� oscillating with the frequency � in the pres-
ence of a constant magnetic field B0. Since the only refer-
ence direction in the problem is determined by the field B0,
we can assume it to be along the z axis, and represent the
probe field as a combination of the longitudinal and the two
circularly polarized components:

B̃�t� = �B�
�ez + B+

��ex + iey� + B−
��ex − iey�
e−i�t + c.c.,

�2.13�

where “c.c.” stands for the complex conjugate. The dimen-
sionless longitudinal and transverse susceptibilities ����� and
����� are defined by writing the linear response magnetic
moment as

M̃�t� =
�g
BS0�2

Teff
�����B�

�eze
−i�t

+
�g
BS0�2

Teff
�����B+

��ex + iey�e−i�t

+
�g
BS0�2

Teff
��

� �− ��B−
��ex − iey�e−i�t + c.c.

�2.14�

The susceptibilities depend also on the constant field B0
�more precisely, on the dimensionless combination
b=g
BB0S0 /Teff�, and are obtained by solving the linearized
Fokker-Planck equation; see Sec. VII. We have not been able
to find an analytical expression for the susceptibilities, valid
in the whole range of b and �. However, from the numerical
solution we deduce that they are well described �within a few
percent� by the following approximate expressions:

��
app��,b� = ��

dc�b�
1

1 − i�T0/�app
� �b�

, �2.15a�

��
app��,b� = ��

dc�b�
1 − ig
BB0S0T0/�app

� �b�

1 − i�g
BB0S0 + ��T0/�app
� �b�

,

�2.15b�

where

��
dc�b� =

1

b2 −
1

sinh2 b
, �2.16a�

��
dc�b� =

b coth b − 1

b2 �2.16b�

are the differential susceptibilities in a constant magnetic
field, and

�app
� �b� =

2

b

coth b − 1/b
1/b2 − 1/sinh2 b

, �2.17a�

�app
� �b� =

b2

b coth b − 1
− 1. �2.17b�

The algorithm for numerical calculation of the susceptibili-
ties as well as their asymptotic behavior in various limiting
cases is described in Sec. VII.

III. MODEL AND BASIC FORMALISM

Within the random matrix theory framework, electrons in
a closed chaotic quantum dot are described by the following
fermionic action:
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S��,��
 =� dt �
n,n�=1

N

�n
†�t���nn�i�t − Hnn���n��t�

−� dt�E�S�t�
 − 2B�t� · S�t�� , �3.1a�

Si � �
n=1

N

�n
† �̂i

2
�n. �3.1b�

Here �n ,�n
† are two-component Grassmann spinors, where

the index n=1, . . . ,N labels the orbital single-electron states
inside the dot. The integration over time is performed along
the forward-backward Keldysh contour,31,32 as marked by �.
The 2�2 Pauli matrices �̂i, where i=x ,y ,z, act in the space
of the two components of the spinors �n. Throughout the
paper we use the hat to indicate matrices in the spin space
and use the notation �̂0 for the 2�2 unit matrix. B�t� is the
external magnetic field, measured in the energy units �such
that the Zeeman splitting in a constant field is equal to 2B�.
The single-electron Hamiltonian of the dot is represented by
an N�N random matrix Hnn� from a Gaussian orthogonal
ensemble, described by the pair correlators:

HmnHm�n� =
N�1

2

	2 ��mn��nm� + �mm��nn�� . �3.2�

The constant �1, which parametrizes the correlators, is the
mean single-electron level spacing in the dot.

As mentioned in Sec. I, we do not include electron-
electron interaction in the charge channel, whose effect is
suppressed when the dot is well coupled to the leads. The
electron-electron interaction in the spin channel is accounted
for by the magnetization energy E�S�, where S is the total
spin of the dot. E�S� is the generalization of the JsS

2 term in
the universal Hamiltonian for the electron-electron interac-
tion in a chaotic quantum dot.26 Since we are going to de-
scribe a ferromagnetic state we must go beyond the quadratic
term. Since the system is assumed to be far from the Stoner
critical point, S�1, all terms �S4 ,S6 , . . .� should be included.
E�S� can be viewed as the sum of all irreducible many-
particle vertices in the spin channel, obtained after integrat-
ing out degrees of freedom with high energies �above Thou-
less energy�; the corresponding term in the action is thus
local in time, and can be written as the time integral of an
instantaneous function E�S�t�
.

This functional can be decoupled using the Hubbard-
Stratonovich transformation with a real vector field h�t�,
which we call below the internal magnetic field:

exp�− i� dtE�S�� =� Dh�t�exp�i� dt�2h · S − Ẽ�h�
� .

�3.3�

As a result, the action S�� ,��
 can be rewritten in the form

S��,��,h
 =� dt �
n,n�=1

N

�n
†�t��Ĝ−1�nn��n��t� −� dtẼ�h�t�
 ,

�3.4�

where the inverse Green’s function,

�Ĝ−1�nn� = �i�̂0�t + h · �̂ + B · �̂��nn� − Hnn��̂0, �3.5�

is a matrix in the time variables t , t�, in the orbital indices
n ,n�=1, . . . ,N, in the spin indices, and in the forward �+�
and backward �−� directions on the Keldysh contour. Integra-
tion over the fermionic fields �n ,�n

† yields the purely bosonic
action:

S�h
 = − i Tr�ln�− iĜ−1�
 −� dtẼ�h�t�
 , �3.6�

where the trace is taken over all indices of the Green’s func-
tion, listed above.

In the space of the forward and backward directions on
the Keldysh contour, we perform the standard Keldysh
rotation,33,34 introducing the retarded �GR�, advanced �GA�,
Keldysh �GK�, and zero �GZ� components of the Green’s
function:

�ĜR ĜK

ĜZ ĜA
� =

1

2�1 1

1 − 1��Ĝ++ Ĝ+−

Ĝ−+ Ĝ−−
�� 1 1

− 1 1� ,

�3.7�

as well as the classical �hcl� and quantum �hq� components of
the internal magnetic field:

�hcl hq

hq hcl� =
1

2
�1 − 1

1 1
��h+ 0

0 − h− ��1 1

1 − 1
� . �3.8�

We will also write this matrix as h=hcl�cl+hq�q, where �cl

and �q are 2�2 matrices in the Keldysh space coinciding
with the unit 2�2 matrix and the first Pauli matrix �x, re-
spectively.

The saddle point of the bosonic action Eq. �3.6� is found
by the first order variation with respect to hcl,q�t�, which
gives the self-consistency equation

hq�t� = 0, −
�Ẽ�hcl�t�


�hj
cl�t�

=
i

2
Tr
n,�

��̂ jĜnn
K �t,t�
 . �3.9�

We also note that the right-hand side of this equation is pro-
portional to the expectation value of the total spin of the
particle for a given trajectory of the internal field h�t�:

S�t� =
i

4
Tr
n,�

��̂ĜK�t,t�� . �3.10�

In Eqs. �3.9� and �3.10�, the trace is taken over orbital and
spin indices only.

In the limit N→�, one can obtain a closed equation for
the Green’s function traced over the orbital indices:35
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ĝ�t,t�� =
i�1

	
�
n=1

N

Ĝnn�t,t�� . �3.11�

The matrix ĝ�t , t�� satisfies the following constraint:

� ĝ�t,t��ĝ�t�,t��dt� = �cl�̂0��t − t�� , �3.12�

where the right-hand side is just the direct product of unit
matrices in the spin, Keldysh, and time indices. The Wigner
transform of ĝK�t , t�� is related to the spin-dependent distri-

bution function f̂�� , t� of electrons in the dot:

�
−�

�

ĝK�t + t̃/2,t − t̃/2�ei�t̃dt̃ = 2 f̂��,t� . �3.13�

In equilibrium, f̂���= �̂0 tanh�� /2T�. The self-consistency
condition �3.9� takes the form

−
�Ẽ�hcl�t�


�hi
cl�t�

= 2S�t� , �3.14a�

S�t� =
	

4�1
lim
t�→t

Tr
�

��̂ĝK�t,t��� −
hcl�t� + B�t�

�1
. �3.14b�

The second of these equations provides the relation between
the internal magnetic field, a fictitious field used in the
Hubbard-Stratonovich transformation, and the spin of the
dot, which is an observable quantity. The last term in Eq.
�3.14� takes care of the anomaly arising from noncommuta-
tivity of the limits N→� and t�→ t. As we will see in Sec.
IV A, the anomalous term actually gives the dominant con-
tribution to the value of the observable, as in the leading
order of the gradient expansion �expansion in the “slowness”
of spin fluctuations�, Eq. �4.8�, Tr���̂ĝK� vanishes, so one
can simply set

S�t� �
hcl

�1
. �3.15�

In this paper we consider the dot coupled to two leads,
identified as left �L� and right �R�. The leads have NL and NR
transverse channels, respectively, see Fig. 1. For nonmag-
netic leads and spin-independent coupling between the leads
and the particle, we can characterize each channel by its
transmission Tn with 0�Tn�1 and by the distribution func-
tion of electrons in the channel Fn�t− t��, assumed to be sta-
tionary. We consider the limit of strong coupling between the
leads and the particle, �n=1

NchTn�1.
The coupling to the leads gives rise to a self-energy term,

which should be included in the definition of the Green’s
function, Eq. �3.5�. Without going into details of the deriva-
tion, presented in Ref. 35, we give the final form of the
equation for the Green’s function traced over the orbital
states, Eq. �3.11�:

��t − ih · �̂ − iB · �̂, ĝ


= �
n=1

Nch Tn�1

2	
�− FnĝZ ĝRFn − FnĝA − ĝK

ĝZ − ĝZFn
�

��1̂ +
Tn

2 �ĝR − 1̂ + FnĝZ ĝRFn + FnĝA

0 − ĝA − 1̂ + ĝZFn

��−1

.

�3.16�

Here the products of functions include convolution in time
variables. This equation is analogous to the Usadel equation
used in the theory of dirty superconductors.36

To conclude this section, we discuss the dependence Ẽ�h�.
Deep in the ferromagnetic state, i.e., far from the Stoner
critical point, we expect the mean-field approach to give a
good approximation for the total spin of the dot. Namely, the
mean field acting on the electron spins is given by
2h0=dE�S� /dS�E��S�. We then require that the response of
the system to this field gives the same average value for the
spin:

S0 =
2h0

2�1
=

E��S0�
2�1

. �3.17�

Here we evaluated S0 from Eq. �3.10� and applied the self-
consistency equation, Eq. �3.14�, to equilibrium state with
ĝK��̂0, when the contribution of the first term in the right-
hand side of Eq. �3.14� vanishes.

Not expecting strong deviations of the magnitude of the

spin from the mean-field value, we focus on the form of Ẽ�h�
when �h��h0. The inverse Fourier transform of Eq. �3.3� and
angular integration for the isotropic E�S� gives

e−iẼ�h��t = const�
0

� sin 2Sh�t

2Sh�t
e−iE�S��tS2dS , �3.18�

where �t is the infinitesimal time increment used in the con-
struction of the functional integral in Eq. �3.3�.

Expanding E�S� near the mean-field value S0,

E�S� � E�S0� + E��S − S0� +
E�

2
�S − S0�2, �3.19�

performing the integration in the stationary phase approxi-
mation and using S0=h0 /�1=−E� / �2�1�, we obtain

Ẽ�h� = − 2
�h − h0 − E�S0/2�2

E�
+ Ẽ0, �3.20�

where Ẽ0 is h-independent term. This expression for Ẽ�h�
defines the action S�h
, Eq. �3.6�.

The energy E�S� does not contain the energy Eorb�S�, as-
sociated with the orbital motion of electrons in the particle.
Namely, to form a total spin S of the particle, we have to
redistribute S electrons over orbital states, which changes the
orbital energy of electrons by Eorb�S���1S2. The total en-
ergy Etot�S� of the particle is the sum of two terms:
Etot�S�=E�S�+Eorb�S�. Similarly, we obtain the total energy
of the system in terms of internal magnetic field
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Ẽtot�h� = Ẽ�h� −
h2

�1
= − 2� 1

E�
+

1

2�1
��h − h0�2 + Ẽ1,

�3.21�

where Ẽ1 does not depend on h. We notice that the extremum

of Ẽtot�h� corresponds to h=h0 and describes the expectation
value of the internal magnetic field in an isolated particle.
The energy cost of fluctuations of the magnitude of the in-
ternal magnetic field is characterized by the coefficient
1 /E�+1 /2�1.

IV. EFFECTIVE ACTION

In this section we analyze the action Eq. �3.6� for the
internal magnetic field h�. We expect that the classical com-
ponent hcl�t� of this field contains fast and small oscillations
of its magnitude around the mean-field value h0. We further
expect that the orientation of hcl�t� changes slowly in time
but is not restricted to small deviations from some specific
direction. Based on this picture, we introduce a unit vector
n�t�, assumed to depend slowly on time, and write

hcl�t� = �h0 + h�
cl�t�
n�t� , �4.1�

where h�
cl�t� is assumed to be fast and small. The external

magnetic field B�t� is also assumed to be much smaller the
internal one h0, and is treated on equal footing with h�

cl�t�.
We expand action �3.6� to the second order in the quantum
component hq�t� and in the fluctuations of the radial classical
component h�

cl�t�:

S�h
 � −
2	

�1
� dtgK�t,t� · hq�t� +

8

E�
� dth�

cl�t�n�t� · hq�t�

−� dtdt��ij
R�t,t��hi

q�t��h�
cl�t��nj�t�� + Bj�t��


−� dtdt��ij
A�t,t���h�

cl�t�ni�t� + Bi�t�
hj
q�t��

−� dtdt��ij
K�t,t��hi

q�t�hj
q�t�� . �4.2�

The applicability of this quadratic expansion is discussed in
Sec. VI B.

In the first term of Eq. �4.2� we introduced the vector part
gK of the Keldysh component of the Green’s function ĝK

= �̂0g0
K+ �̂ ·gK. �Indeed, an arbitrary matrix in the 2�2 spin

space can be expressed as a linear combination of the unit
matrix and the three Pauli matrices.�

In the last three terms of Eq. �4.2� we introduced the
polarization operator, defined as the kernel of the quadratic
part of the action of the fluctuating bosonic fields:

��Z �A

�R �K � � ��cl,cl �cl,q

�q,cl �q,q � , �4.3a�

�ij
���t,t�� =

i

2

�2 Tr�ln G−1�
�hj

��t���hi
��t�

, �4.3b�

where � ,�=cl,q and i , j=x ,y ,z. The t�→ t anomaly is ex-
plicitly taken into account in the definition of the polarization
operators; see Eq. �4.14� below.

We emphasize that the Green’s function and the polariza-
tion operator appearing in Eq. �4.2� are calculated at
h�

cl�t�=0 and hq�t�=0 for a given trajectory of the classical
field h0n�t�. Their explicit calculation is performed in the
following two subsections.

A. Keldysh component of the Green’s function

Here we use the Usadel equation, Eq. �3.16�, with
hcl�t�=h0n�t�, hq�t�=0. For the Green’s function we have

ĝR�t,t�� = − ĝA�t,t�� = �̂0��t − t�� , �4.4�

while the Keldysh component satisfies the equation

��t − ih0n · �̂, ĝK
 = �
n=1

Nch Tn�1

2	
�2Fn − ĝK� . �4.5�

We introduce the notation

1

�
= �

n=1

Nch Tn�1

2	
=

1

�L
+

1

�R
. �4.6�

Then the scalar g0
K and vector gK components of

ĝK= �̂0g0
K+ �̂ ·gK satisfy two coupled equations:

��t + �t� +
1

�
�g0

K�t,t�� = �
n=1

Nch Tn�1

2	
2Fn�t − t��

+ ih0�n�t� − n�t��
 · gK�t,t�� ,

�4.7a�

��t + �t� +
1

�
�gK�t,t�� + h0�n�t� + n�t��
gK�t,t��

= ih0�n�t� − n�t��
g0
K�t,t�� . �4.7b�

In the zero approximation, we can consider the stationary
situation: g0

K�t , t��=g0
K�t− t�� and n�t�=const. In this case, we

have

g0
K�t,t�� =

�

�L
2FL�t − t�� +

�

�R
2FR�t − t��, gK = 0.

�4.8�

For an arbitrary time dependence n�t� Eqs. �4.7a� and
�4.7b� cannot be solved analytically. However, if the varia-
tion of n�t� is slow enough, �ṅ���1, we can do the gradient
expansion �expansion in the time derivatives of n�t�
, re-
stricting ourselves to the first derivative:

��t̄ +
1

�
�gK + 2h0n � gK = it̃h0ṅg0

K. �4.9�

Here we introduced t̄= �t+ t�� /2, t̃= t− t�, �t+�t�=�t̄. The de-
pendence on t̃ is split off and remains unchanged, while for
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the dependence on t̄ the solution is determined by a linear
integral operator Ln

+, conveniently determined in the Fourier
space:

Ln
� = �1

�
� �t̄ � 2h0n��−1

, �4.10a�

Ln
+���X��� =

n�n · X���

− i� + 1/�

+
1

2�
�

− n � �n � X���
 � i�n � X���

− i�� � 2h0� + 1/�

.

�4.10b�

Thus, all perturbations of gK decay with the characteristic
time �. In particular, the solution of Eq. �4.9� has the form

gK = it̃h0Ln
+ṅg0

K � it̃h0�g0
K ṅ − 2h0�n � ṅ

�2h0��2 + 1
. �4.11�

Now, an explicit expression for the first term in Eq. �4.2�
can be easily obtained from Eq. �4.11� by taking the limit
t̃→0 and taking into account that any fermionic distribution
function in the time representation has the following equal-
time asymptotics:

g0
K�t,t�� �

2

i	

1

t − t�
, �t → t�� . �4.12�

This asymptotics follows from Eq. �3.13� and the simple fact
that the distribution function of a Fermi system in the energy
representation always has the limits f���→ �1 at �→ ��.
We have

gK�t,t� =
2h0�

	

ṅ − 2h0�n � ṅ

�2h0��2 + 1
. �4.13�

We notice that n ·gK�t , t�=0, and therefore the first term in
the action Eq. �4.2� is coupled only to the tangential fluctua-
tions of hq�t��n�t�.

B. Polarization operator

For the polarization operator it is sufficient to take the
leading �zeroth� order of the expansion in the time deriva-
tives of n�t�, i.e., to calculate �ij

���t , t�� for a fixed direction
n, given by the instantaneous value of n�t�. This calculation
is done analogously to Ref. 35.

The polarization operator can be represented as the re-
sponse of the Green’s functions to a change in the field, as
follows directly from definition �4.3� and expression �3.6� for
the action

�ij
���t,t�� =

	

2�1

Tr4�4����̂i�ĝ�t,t��
�hj

��t��
−

2

�1
���

q �ij��t − t�� .

�4.14�

Here the Green’s function �ĝ�t , t� can be calculated as the
first-order response of the solution of Eq. �3.16� to small
arbitrary �in all three directions� increments of �hcl�t� and
�hq�t�. The zero-order solution of Eq. �3.16� in the field hcl

=h0n and hq=0 is

ĝ�t,t� = �̂0���t − t�� g0
K�t − t��

0 − ��t − t��
� . �4.15�

First, we calculate �ĝZ, which responds only to �hq:

��t + �t� −
1

�
��ĝZ�t,t�� − ih0�̂ · n�t��ĝZ�t,t��

+ �ĝZ�t,t��ih0�̂ · n�t�� = 2i�̂ · �hq�t���t − t�� .

�4.16�

Since �t+�t�=�t̄, the solution always remains proportional to
��t− t��:

�ĝZ�t,t�� = − 2i�̂ · �Ln
−�hq��t���t − t�� . �4.17�

Given �ĝZ, components �ĝR,A can be found either from Eq.
�3.16�, or, equivalently, using constraint �3.12�:

ĝ�ĝ + �ĝĝ = 0 ⇒ �ĝR = −
ĝK�ĝZ

2
, �ĝA =

�ĝZĝK

2
.

�4.18�

We notice that both �ĝR,A respond only to hq�t� and, there-
fore,

�ij
Z�t,t�� �

Tr��̂i��ĝR�t,t� + �ĝA�t,t�
�
�hj

cl�t��
� 0. �4.19�

This equation ensures that the action along the Keldysh con-
tour vanishes for hq�0.

To evaluate the remaining three components of the polar-
ization operator, we can apply the variational derivatives to
the sum of �ĝK�t , t�+�ĝZ�t , t� with respect to either classical
�hcl�t�� or quantum �hq�t�� field, which give �ij

R�t , t�� and
�ij

K�t , t��, respectively. Then, the advanced component
�ij

A�t , t��= �� ji
R�t� , t�
�.

The equation for �ĝK= �̂ ·�gK reads as

��t + �t� +
1

�
��gK�t,t��

+ h0�n�t� � �gK�t,t�� − �gK�t,t�� � n�t��


= i��hcl�t� − �hcl�t��
g0
K�t − t�� − 2i�hq�t���t − t��

− Q�t,t�� , �4.20a�

where

Q = �
n=1

Nch Tn�1

2	
�g0

K

2
�gZg0

K

2
+ Fn�gZFn�

− �
n=1

Nch Tn�1 − Tn��1

2	
�g0

K

2
− Fn��gZ�g0

K

2
− Fn�

�4.20b�

and �gZ=Tr��̂�ĝZ� /2 with �ĝZ given by Eq. �4.17�.
To calculate the retarded component �ij

R of the polariza-
tion operator, we calculate the response of �gK�t , t�� to �hq in
the limit t�→ t. Using the asymptotic behavior of the Fermi
function, Eq. �4.12�, we obtain
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�gK�t,t� =� d�

2	

− 2i�

	
Ln

+����hcl���e−i�t. �4.21�

Substituting this expression for �gK�t , t� to Eq. �4.14�, we
obtain

�ij
R��� = ��,ij

R ��� + ��,ij
R ��� , �4.22a�

with

��,ij
R ��� = −

2

�1

ninj

1 − i��
, �4.22b�

��,ij
R ��� = −

2

�1
�
�

�ij − ninj � ieijknk

2

�1 � 2ih0��
1 − i�� � 2h0��

.

�4.22c�

Here we represented the polarization operator �ij
R��� as a

sum of the radial, ��,ij
R ���, and tangential, ��,ij

R ���, terms.
We note that the action Eq. �4.2� contains only the radial
component of the retarded and advanced polarization opera-
tors because we do not perform expansion in terms of the
tangential fluctuations of the classical component of the field
hcl�t�.

In response to �hq, both corrections �gK�t , t�� and
�gZ�t , t�� contain terms ���t− t��. However, their sum
�gK�t , t��+�gZ�t , t�� remains finite in the limit t→ t�:

�gK�t,t�� + �gZ�t,t�� = − 2i� dt�� dt1dt2Ln
+�t̄ − t1�

�Q�t1 − t2 + t̃/2;t2 − t1 + t̃/2�

�Ln
−�t2 − t���hq�t�� , �4.23a�

Q��1;�2� =
2

�
���1����2�

− �
n=1

Nch Tn�1

2	
�g0

K��1�
2

g0
K��2�
2

+ Fn��1�Fn��2��
− �

n=1

Nch Tn�1 − Tn��1

2	
�g0

K��1�
2

− Fn��1��
��g0

K��2�
2

− Fn��2�� , �4.23b�

with t̄= �t+ t�� /2 and t̃= t− t�.
From Eq. �4.22� we obtain the following expression for

the Keldysh component of the polarization operator:

�ij
K��� = ��,ij

K ��� + ��,ij
K ��� , �4.24a�

where

��,ij
K ��� = − i

ninj

�2 + 1/�2R��� , �4.24b�

��,ij
K ��� = −

i

2�
�

�ij − ninj � ieijknk

�� � 2h0�2 + 1/�2 R��� . �4.24c�

Here function R��� coincides with the noise power of elec-
tric current through a metallic particle in the approximation
of noninteracting electrons

R��� = �
n=1

Nch � d�

8	
Tn�1

���8 − g0
K���g0

K�� + �� − 4Fn���Fn�� + ��


+ �1 − Tn��g0
K��� − 2Fn���
�g0

K�� + �� − 2Fn�� + ��
� .

�4.25�

In principle, electron-electron interaction in the charge chan-
nel can be taken into account. The interaction modifies the
expression Eq. �4.25� for R��� in higher orders37 in
��1�1 and we neglect this correction here.

In this paper we consider a particle connected to electron
leads at temperature T with the applied voltage bias V /e. In
this case, FL,R���=tanh��−
L,R� / �2T� with 
L−
R=V, and
the integration over � gives

2	�R��� = 4� coth
�

2T
+ 
�T�V,�� , �4.26�

where

�T�V,�� � �
�

2�� � V�coth
� � V

2T
− 4� coth

�

2T

�4.27�

and 
 is the “Fano factor” for a particle


 =
�2

�L�R
+

�3�1

2	�R
2 �

n�L

Tn�1 − Tn� +
�3�1

2	�L
2 �

n�R

Tn�1 − Tn� .

�4.28�

For low bias, �V��T, the term 
�T�V ,�� represents just a
small correction to the equilibrium �Nyquist� value of R���.
At �V��T the function �T�V ,�� has two scales of �: �i� T
smears the nonanalyticity at �→0, but the value of �T�V ,��
deviates from �T�V ,0� at �����V�. Thus, the typical time
scale above which one can approximate �K��� by a constant
is at least ��max�T , �V��. In the limit �→0 we have

�ij
K�� = 0� = − i

8�Teff

�1
�ninj +

�ij − ninj

�2h0��2 + 1
� , �4.29�

where the effective temperature Teff is given by

Teff � T + 
�V

2
coth

V

2T
− T� . �4.30�

In the time domain the limit �→0 corresponds to approxi-
mating the polarization operator by

�ij
K�t,t�� � �ij

K�� = 0���t − t�� . �4.31�

According to the abovesaid, this is valid for times
�t− t���1 /Teff.
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C. Final form of the action

Summarizing the results of the previous two subsections,
write the action for the classical and quantum components of
the internal magnetic field hcl�t� ,hq�t�, with hcl�t� in the form
of Eq. �4.1�, as a sum of the radial and tangential terms:

S�h
 = S��h�
cl,h�

q
 + S��n�t�,h�
q 
 . �4.32�

The radial term in the action has the form

S��h�
cl,h�

q
 =� dtdt��D�
−1����t,t��h�

��t�h�
��t��

+
4

�1
� dtB�t� · n�t�h�

cl�t� , �4.33�

where the inverse of the internal magnetic field propagator is
given by

�D�
−1��t,t�� =

4

E�
�0 1

1 0
���t − t�� , �4.34�

− � 0 ��
R�t,t��

��
A�t,t�� ��

K�t,t��
� �4.35�

and ��
���t , t��=ni�t�nj�t���,ij

���t , t�� �we remind that the calcu-
lation of the polarization operator was done in the leading
order of the expansion in time derivatives of n�t�, i.e., ne-
glecting the difference between n�t� and n�t��
. The matrix
inverse is both in the 2�2 space of the Keldysh indices
� ,�=cl,q, and in the space of time arguments t , t�. The latter
inversion is conveniently done after the Fourier transform
with respect to t− t�:

D�
R��� = D�

q,cl��� =
E�

4

− i� + 1/�
− i� + ��1 + E�/2�/���1�

,

�4.36�

and D�
A���= �D�

R���
�. The Keldysh component is

D�
K��� = D�

q,q��� = D�
R�����

K���D�
A��� , �4.37�

where ninj��
K��� is given by Eq. �4.24b�.

The most interesting for us is the tangential term in the
action, which describes the slow dynamics of the direction
n�t� of the internal field. This term is given by

S��n�t�,h�
q 
 = −

4h0�

�1
� dt

�ṅ − 2h0�n � ṅ� · h�
q

�2h0��2 + 1

−
4

�1
� dt�n � �n � B

 · h�

q

−� dtdt�h�,i
q �t���,ij

K �t,t��h�,j
q �t�� .

�4.38�

The Fourier transform of the polarization operator ��,ij
K �t , t��

with respect to t− t� is given by Eq. �4.24�.
We have assumed the typical time scale of external field

B�t� to be much longer than � or 1 /h0. This enabled us to
take the polarization operators in the instantaneous approxi-

mation ��ij
���t , t����t− t��, equivalent to the �→0 limit in

the denominator of Eq. �4.22�
 in the corresponding terms of
the action.

V. STOCHASTIC LANDAU-LIFSHITZ-GILBERT
EQUATION

A. Langevin equation for the orientation of the internal
magnetic field

In this section we consider evolution of the direction vec-
tor n�t�, described by the tangential part of the action, Eq.
�4.38�. We neglect fluctuations of the magnitude of the inter-
nal magnetic field, h�, and the conditions, under which this
can be done, are listed in the next section.

We decouple the quadratic in h�
q component of the action

in Eq. �4.38� by introducing an auxiliary transverse field
w�t��n�t�:

exp�− i� dtdt�h�,i
q �t���,ij

K �t,t��h�,j
q �t��


=� Dw�t�exp� 4i

�1
� dtw�t� · h�

q �t��
� exp� 4i

�1
2� dtdt����

K �ij
−1�t,t��wi�t�wj�t��� . �5.1�

After this operation, the tangential part of the action for
n�t� ,h�

q �t� takes the form

S�� �n�t�,h�
q 
 = −

4

�1
� dth�

q �t��h0�ṅ − 2�h0��2�n � ṅ

�2h0��2 + 1

+ ṅ � �n � B
 − w� . �5.2�

Integration of eiS� over h�
q �t� produces a functional � func-

tion, whose argument determines the equation of motion

h0�ṅ − 2�h0��2�n � ṅ

�2h0��2 + 1

+ n � �n � B
 = w . �5.3�

Thus, the field w�t� plays the role of the Gaussian random
Langevin force, and the last exponential factor in Eq. �5.1�
can be interpreted as its probability distribution. Equiva-
lently, one can specify its correlation function:

	wi�t�wj�t��
 =
�1

2

8
i��,ij

K �t,t�� . �5.4�

It is convenient to resolve Eq. �5.3� with respect to ṅ:

ṅ = 2�n � �w + B�
 −
1

h0�
�n � �n � �w + B�
� . �5.5�

This is nothing but the Landau-Lifshitz-Gilbert equation for
the direction n�t� of the total spin �we remind that the total
spin and the internal field are proportional to each other; see
Eq. �3.14b� and the discussion after it
, in the presence of an
external magnetic field B�t� and a stochastic field w�t�.

As discussed in the end of Sec. IV B, for times
�t− t���1 /Teff the polarization operator ��,ij

K �t , t�� and thus
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the random field correlator 	wi�t�wj�t��
, Eq. �5.4�, can be
approximated by a � function �Markov approximation�:

	wi�t�wj�t��
 = ��1Teff
�ij − ninj

�2h0��2 + 1
��t − t�� . �5.6�

As seen from Eq. �4.29�, the strength of the stochastic term is
determined by the effective temperature Teff, Eq. �4.30�. At
low bias, �V��T �almost equilibrium situation� we have
Teff�T, so correlator �5.6� can be obtained from the
fluctuation-dissipation theorem, so the magnetization fluc-
tuations can be viewed as the spin Nyquist noise. In the
opposite limit of low temperature, T� �V�, the effective tem-
perature Teff�
�V� /2, and thus the magnetization fluctua-
tions correspond to spin shot noise. We also note that the fact
that Eq. �5.6� represents a limit of Eq. �5.4� with a finite
correlation time, automatically prescribes the Stratonovich
resolution of the Itô-Stratonovich ambiguity for multiplica-
tive noise �see Ref. 5 for a detailed discussion�.

B. Fokker-Planck equation for the orientation probability
distribution

Next, we follow the standard procedure of derivation of
the Fokker-Planck equation for the distribution P�n� of the
probability for the internal magnetic field to point in the
direction n. The probability distribution satisfies the continu-
ity equation:

�P
�t

+
�

�n
· J = 0, �5.7�

where the probability current is defined as

J = �2n � B −
1

h0�
n � �n � B
�P +

1

2
���� ·

�P
�n

��
�5.8�

and the stochastic velocity � is introduced in terms of the
field w as

� = 2�n � w
 −
1

h0�
�n � �n � w�
 . �5.9�

The derivative � /�n is understood as the differentiation with
respect to local Euclidean coordinates in the tangent space.
Performing averaging over fluctuations of w in Eq. �5.8�, we
obtain

�P
�t

=
�

�n
· �− 2�n � B
P +

�n � �n � B�

h0�

P +
1

T0

�P
�n� .

�5.10�

where the time constant T0 is the Néel time

T0 =
2�h0��2

�Teff�1
. �5.11�

Below we use the spherical coordinates for the direction
of the internal magnetic field, n= �sin � cos � , sin � sin � ,
cos ��, in which the Fokker-Planck equation takes the form
�this is precisely the form used in the original work of
Brown1�:

�P
�t

=
1

sin �

�

��
�F�P +

1

T0

1

sin �

�P
��
�

+
1

sin �

�

��
�sin �F�P +

sin �

T0

�P
��
� , �5.12�

where

F� =
Bx sin � − By cos �

h0�
− 2 cos ��Bx cos � + By sin ��

+ 2 sin �Bz, �5.13�

F� = − 2�Bx sin � − By cos �� −
cos �

h0�
�Bx cos � + By sin ��

+
sin �

h0�
Bz. �5.14�

It should be supplemented by the normalization condition:

� d2nP�n� = �
0

2	

d��
0

	

sin �d�P��,�� = 1, �5.15�

which is preserved if the boundary conditions at �=0,	 are
imposed:

lim
�→0,	

sin ��
0

2	

d�
�P
��

= 0. �5.16�

Below we apply the Fokker-Planck equation to the calcula-
tion of the average magnetic moment of an ensemble of par-
ticles �in the units of g
BS0�:

M =� d2nnP�n� . �5.17�

VI. APPLICABILITY OF THE APPROACH

In this section we discuss the conditions of validity of the
stochastic LLG equation, Eq. �5.5�, for the model of a mag-
netic particle connected to leads under a finite bias. We
briefly listed these conditions in Sec. I. Here we present their
more detailed quantitative analysis.

A. Fluctuations of the radial component of the internal
magnetic field

We represented the classical component of the internal
magnetic field hcl in terms of a slowly varying direction n�t�
and fast oscillations h�

cl of its magnitude around the average
value h0. Now, we evaluate the amplitude of oscillations of
the radial component h�

cl of the field, using the radial term in
the action; see Eqs. �4.32� and �4.33�.

The typical frequencies for time evolution of small fluc-
tuations of the internal magnetic field in the radial direction
are of order of

� �
�1 + E�/2

�1

1

�
�6.1�

as one can conclude from the explicit form of the propagator
D�

R���, Eq. �4.36�, of these fluctuations. This scale has the

STOCHASTIC DYNAMICS OF MAGNETIZATION IN A… PHYSICAL REVIEW B 79, 064418 �2009�

064418-11



meaning of the inverse RC time in the spin channel. Deep in
the ferromagnetic state �i.e., far from the Stoner critical point
E�+2�1=0� we estimate �1+E� /2��1 �which is equivalent
to E��h0 /S0�, so this spin-channel RC time is of the same
order as the escape time �. This estimate for the frequency
range is consistent with the simple picture, which describes
the evolution of the internal magnetic field of the grain as a
response to a changing value of the total spin of the particle
due to random processes of electron exchange between the
dot and the leads. The electron exchange happens with the
characteristic rate 1 /�.

The correlation function 	h�
cl�t�h�

cl�t��
 can be evaluated by
performing the Gaussian integration with the quadratic ac-
tion in h�

cl and h�
q. Using Eq. �4.37�, we obtain the equal-time

correlation function

	�h�
cl�2
 =

i

2
� d�

2	
D�

K���

=
�E��2

32��1
� d�

2	

2	R���
�2 + �1 + E�/�2�1�
2/�2 . �6.2�

This equation gives the value of fluctuations of the radial
component of the internal magnetic field of the particle.
These fluctuations survive even in the limit T=0 and V=0,
when R���=2��� /	�. We have the following estimate:

	�h�
cl�2
 =

�E��2

16	��1
ln

ET�

1 + E�/�2�1�
, �6.3�

the upper cutoff ET is the Thouless energy, ET=vF /L for a
ballistic dot with diameter L and electron Fermi velocity vF.

The separation of the internal magnetic field into the ra-
dial and tangential components is justified, provided that the
fluctuations �	�h�

cl�2
 of the radial component are much
smaller than the average value of the field h0, i.e., 	�h�

cl�2

�h0

2. Using the estimate Eq. �6.3�, we obtain the necessary
requirement for the applicability of equations for the slow
evolution of the vector of the internal magnetic field of a
particle:

S0 �� 1

��1
ln�ET�� , �6.4�

where S0 is the spin of a particle in equilibrium and we again
used the estimate E��h0 /S0. Condition of Eq. �6.4� requires
that the system is not close to the Stoner instability.

B. Applicability of the Gaussian approximation

Let us discuss the applicability of the Gaussian approxi-
mation for the action in h�

cl and hq. The coefficients in front
of terms hq�t�h��t1� . . .h�

cl�tn� are obtained by taking the nth
variational derivative of �gK�t , t�+�gZ�t , t�, or, equivalently,
by iterating the Usadel equation n times. Since the typical
frequencies of h� are ��1 /�, the left-hand side of the equa-
tion is ���n+1�gK /�, while the right-hand side is h�

cl��n�gK.
Since the only time scale here is �, all the coefficients of the
expansion of the action in h�

cl��� at ��1 /� are of the same
order:

Sn+1 �
�n−1

E�
� d�1 . . . d�n

�2	�n

�h�
cl��1� . . . h�

cl��n�hq�− �1 − . . . − �n� . �6.5�

At the same time, the typical value of h�
cl���1 /��,

as determined by the Gaussian part of the action, was
estimated in the previous subsection to be of the order of
��D�

K���������1�1, so the higher-order terms are indeed
not important.

For the quantum component of the field the quadratic and
quartic terms in the action are estimated as

Sn+1 �
Teff�

n

�1
� d�1 . . . d�n

�2	�n

�hq��1� . . . hq��n�hq�− �1 − . . . − �n� . �6.6�

If Teff�1 /�, then the typical frequency scale is ��1 /�, so
the quadratic term gives hq���1 /�����1 /Teff, and
Sn���1 /Teff�n/2−1����1 / ��Teff�
n/2−1. If Teff�1 /�, at the
typical scale ��Teff we obtain hq���Teff����1 / �Teff

2 ��, so
again Sn����1�n/2−1�1 for n�2.

Physically, the parameter 1 / ���1�=Nch �or Teff /�1, if it is
larger� can be identified with the number of the independent
sources of the noise acting on the magnetization field. Thus,
the smallness of the non-Gaussian part of the action is noth-
ing but the manifestation of the central limit theorem.

C. Applicability of the Fokker-Planck equation

According to the Fokker-Planck equation, the typical
scale of the time evolution of the direction n�t� is T0, defined
in Eq. �5.11�. According to Eq. �6.1�, the time scale of the
fluctuations of the magnitude of the internal magnetic field is
of the order of �. Thus, the separation into slow and fast
variables is possible when T0��. This is also the condition
of validity of the gradient expansion of Sec. IV, �ṅ���1. It
can be equivalently presented as

Teff

�1
� �h0

�1
�2

= S0
2. �6.7�

Note, however, that in order to have any magnetic moment at
all, we need the effective temperature of the system to be
lower than the Curie temperature, i.e.,

Teff � h0 = S0�1. �6.8�

This, in fact, represents a stronger condition than Eq. �6.7�.
The Markovian approximation for the stochastic field w�t�

is valid when its correlation time, 1 /Teff, is shorter than the
typical scale of evolution: 1 /Teff�T0. This can be rewritten
as

S0
2 �

1

�1�
, �6.9�

which is weaker than the condition of Eq. �6.4�, and thus is
redundant.

The regular precession in the magnetic field with fre-
quency g
BB does not restrict the applicability of the Mar-
kovian approximation.
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VII. MAGNETIC SUSCEPTIBILITY OF METALLIC
PARTICLES OUT OF EQUILIBRIUM

The LLG equation derived in this paper for a ferromag-
netic particle with finite bias between the leads can be ap-
plied to a number of experimental setups. In this paper we
apply the stochastic equation for spin distribution function to
the analysis of the magnetic susceptibility at finite frequency.
The susceptibility is the basic characteristic of magnetic sys-
tems; it can often be measured directly and determines other
measurable quantities.

Below, we calculate the susceptibility of an ensemble of
particles placed in constant magnetic field of an arbitrary
strength and oscillating weak magnetic field; see Fig. 1. We
consider the oscillating magnetic field with its components in
directions parallel and perpendicular to the constant mag-
netic field.

A. Solution at zero noise power

When w�t�=0, and at fixed direction of the field, B�t�
=ezB�t� �thus corresponding to �=0�, Eq. �5.5� is easily in-
tegrated for an arbitrary time dependence B�t�:

� = �0 − �
0

t

2B�t��dt�, �7.1�

tan
�

2
= tan

�0

2
exp�− �

0

t B�t��
h0�

dt�� . �7.2�

Notice that the noise is absent for T=V=0 and at �=0,
which requires a constant magnetic field in the above equa-
tions.

B. Constant magnetic field

At finite Teff and constant magnetic field B0 the Fokker-
Planck equation has a simple solution

P0��� =
b

sinh b

eb cos �

4	
, �7.3�

where the strength of constant magnetic field is written in
terms of the dimensionless parameter

b �
�2h0��B0

��1Teff
=

B0T0

h0�
. �7.4�

Substituting this probability function into Eq. �5.17�, we ob-
tain the classical Langevin expression for the magnetic mo-
ment of a particle in a magnetic field

Mz�b� = coth b −
1

b
, Mx = My = 0. �7.5�

This expression for the magnetic moment coincides with that
in thermal equilibrium, provided that the temperature is re-
placed by the effective temperature Teff defined by Eq.
�4.30�.

The differential dc susceptibility along the field is equal to

��
dc�b� =

dMz�b�
db

=
1

b2 −
1

sinh2 b
. �7.6�

The dc susceptibility in the direction perpendicular to the
field corresponds to a simple tilt of the magnetic field, pro-
ducing a proportional tilt of the magnetic moment:

��
dc�b� =

Mz�b�
b

=
b coth b − 1

b2 . �7.7�

C. Longitudinal susceptibility

We now consider the response of the magnetization to

weak oscillations B̃z�t� of the external magnetic field with
frequency � in direction parallel to the fixed magnetic field
B0. We write the oscillatory component of the field in terms
of the dimensionless field strength b�:

B̃z�t� = �b�e−i�t + b�
�ei�t�

B0

b
. �7.8�

The linear correction to the probability distribution can be
cast in the form

P��,t� = �1 + b�u����e−i�t + b�
�u�

����ei�t
P0��� , �7.9�

with P0��� defined by Eq. �7.3�. The magnetic ac suscepti-
bility can be evaluated from Eq. �7.9� using Eq. �5.17� as

����,b� = 2	�
0

	

u����P0���cos � sin �d� . �7.10�

The equation for u���� is obtained from Eq. �5.12� with

Bz=B0+ B̃z�t�:

�2u�

��2 +
cos � − b sin2 �

sin �

�u�

��
+ i u� = b sin2 � − 2 cos � ,

�7.11�

where we introduced the dimensionless frequency

 = �T0, �7.12�

and the time constant T0 is defined in Eq. �5.11�.
Note the symmetry of Eq. �7.11� with respect to the si-

multaneous change b→−b and �→	−�: the differential op-
erator on the left-hand side is even, while the right-hand side
is odd. This translates into the property ���� ,b�=���� ,−b�.
The normalization condition for P���, Eq. �5.15�, requires
that

�
0

	

u����P0���sin �d� = 0. �7.13�

The latter holds if the boundary conditions Eq. �5.16� are
satisfied, which in the case of axial symmetry can be written
as

lim
�→0,	

�sin �
�u����

��
� = 0. �7.14�

The differential equation, Eq. �7.11�, with the boundary
condition Eq. �7.14� can be solved numerically and then the
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susceptibility is evaluated according to Eq. �7.10�. The result
is shown in Figs. 2 and 3, where the susceptibility is shown
as a function of frequency � or magnetic field b, respec-
tively. We also consider various asymptotes for the ac sus-
ceptibility, obtained from the solution of Eq. �7.11�.

At zero constant magnetic field, b=0, we find the exact
solution of Eq. �7.11� explicitly:

u���� =
cos �

1 − i /2
. �7.15�

This solution gives the ac susceptibility of a Debye form:

��� ,b = 0� =
1

3

1

1 − i /2
. �7.16�

For b�1 only cos ��1 /b matter, and we can find a spe-
cific solution of the inhomogeneous equation:

u���� =
1 − b�1 − cos ��

b − i /2
, b � 1. �7.17�

The requirement of regularity at the opposite end can be
replaced by the probability normalization condition, Eq.
�7.13�, which is satisfied by this solution. Substituting this
solution to Eq. �7.10�, we obtain the strong field asymptote
for the ac susceptibility

��� ,b � 1� =
1

b�b − i /2�
. �7.18�

For  �1 and  �b, we can neglect the derivatives in
Eq. �7.11� and find the solution in the form

u���� �
b sin2 � − 2 cos �

i 
, �7.19�

This solution u���� also satisfies Eq. �7.13�. For the suscep-
tibility, Eq. �7.10�, we obtain

��� → �,b� =
2i

 
� coth b

b
−

1

b2� . �7.20�

Finally, the low-frequency limit can be also analyzed ana-
lytically. The real part of the susceptibility coincides with the
differential susceptibility in dc magnetic field, Eq. �7.6�, for
the imaginary part to the first order in the frequency we
obtain, see Appendix B,

Im ��� ,b� =  f ��b� . �7.21�

The function f ��b� has a complicated analytical form and is
not presented here, but its plot is shown in Fig. 4.

In all four limiting cases considered above, the asymptotic
approximations hold regardless the order in which the limits
are taken. Indeed, the asymptote of the expression for the
susceptibility in the zero field, Eq. �7.16�, has the asymptote
at  →� consistent with Eq. �7.20� at b=0. Similarly, the
high-frequency limit of Eq. �7.18� coincides with the limit
b→� of Eq. �7.20�. Both limits of weak and strong magnetic
field of the imaginary part of the susceptibility at low fre-
quencies, Eq. �7.21�, coincide with the imaginary part of
��� ,b�, calculated from Eq. �7.16� and Eq. �7.20�, respec-
tively.
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FIG. 2. �Color online� Plot of the real and imaginary parts of the
susceptibility ��� ,b� as a function of the dimensionless frequency
 =�T0. The oscillatory field at frequency � is parallel to the con-
stant magnetic field with strength b. The real part of the suscepti-
bility decreases monotonically from its dc value, Eq. �7.6�, as fre-
quency increases, while the imaginary part increases linearly at
small  �1, see Eq. �7.21�, and decreases at higher frequencies.
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FIG. 3. �Color online� Plot of the real and imaginary parts of the
ac susceptibility ��� ,b� at several values of the dimensionless
frequency  of the oscillating magnetic field along the constant
magnetic field with strength b. In general, magnetic field suppresses
both real and imaginary parts of the susceptibility.
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FIG. 4. �Color online� Dependence on magnetic field b of the
slope of the imaginary part of the linear in frequency susceptibility
��� ,b� at low frequencies  �1, calculated according to Eq.
�7.21�. For comparison, we also plot function f �

app�b�; see Eq.
�7.25�.
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In general, the ac susceptibility is given by the following
expression:

��� ,b� = �
n

�n
� �b�

1 − i�T0/�n
� �b�

, �7.22�

where functions �n
� �b� and �n

� �b� are real. This expression
can be obtained by expanding the right-hand side of Eq.
�7.11� in terms of the eigenfunctions of the linear differential
operator on the left-hand side, analytically continued to real
i . For the weak field, b�1, this expansion can be obtained
by expanding u���� in Legendre polynomials, which gives
the poles �n

� �b→0�=n�n+1�+O�b�, and the residues
�n

� �b→0�=O�b�n−1�/2� for n odd and �n
� �b→0�=O�bn/2+1� for

n even.
For practical purposes, we found from a numerical analy-

sis that even the simple Debye approximation,

��
app��,b� =

��
dc�b�

1 − i�T0/�app
� �b�

, �7.23�

with ��
dc�b� given by Eq. �7.6�, and �app

� �b� determined from
the high-frequency asymptotics, Eq. �7.20�,

�app
� �b� =

− iT0

��
dc�b�

lim
�→�

�����,b� =
2

b

coth b − 1/b
1/b2 − 1/sinh2 b

,

�7.24�

gives a very good estimate of the susceptibility for all values
of � �taken on the real axis� and b. The analysis shows that
the susceptibility, Eq. �7.10�, obtained from a numerical so-
lution of Eq. �7.11�, is within a few percent of the estimate
given by Eq. �7.23�. To illustrate the accuracy of the high-
frequency approximation for �app

� �b�, Eq. �7.24�, we apply it
in the opposite limit of low frequencies,  �1, and compare
the exact function f ��b� appearing in Eq. �7.21�, with

f �
app�b� =

1

iT0
� ���

app��,b�
��

�
�=0

=
��

dc�b�

�app
� �b�

. �7.25�

For visual comparison of functions f ��b� and f �
app�b�, we plot

both functions in Fig. 4, where these curves are nearly indis-
tinguishable. The difference between these two curves van-
ishes at b→0 and b→�, and has a maximal difference at
b�2, which constitutes only a tiny fraction of f ��b�.

D. Transverse susceptibility

Next, we consider the response of the magnetization to

weak oscillations B̃��t� of the external magnetic field with
frequency � in the direction perpendicular to that of the fixed
magnetic field B0. We write the oscillatory component of the
field in the form

B̃��t� = �b��ex + iey�e−i�t + b�
� �ex − iey�ei�t


B0

b
.

�7.26�

This field represents a circular polarization of an ac magnetic
field in the �x ,y� plane, perpendicular to the fixed magnetic

field in the z direction: B= �B� cos �t ;B� sin �t ;B0�. We
look for the linear correction to the probability distribution in
the form

P��,�,t� = P0����1 + b�u����ei�−i�t + b�
� u�

� ���e−i�+i�t
 .

�7.27�

We define the transverse susceptibility in response to the ac
magnetic field, Eq. �7.26�, as

��� ,b� = 2	
1

2
�

0

	

u����P0���sin2 �d� . �7.28�

According to Eq. �5.17�, such a definition translates in the
following expression for the Cartesian components of the
oscillating magnetic moment:

Mx�t� = 2 Re���b�e−i�t�, My�t� = 2 Im���b�e−i�t� .

�7.29�

The equation for u���� is obtained from the Fokker-Planck
equation, Eq. �5.12�, linearized in the parameter b�:

�2u�

��2 +
cos � − b sin2 �

sin �

�u�

��
+ �i � −

1

sin2 �
�u�

= − sin ��2 − 2ih0�b + b cos �� . �7.30�

Here the dimensionless frequency  � corresponds to the dif-
ference of the driving frequency � and the precession fre-
quency −2B0 in the constant external field B0:

 � = �� + 2B0�T0 =  + 2�h0��b , �7.31�

where T0 is defined in Eq. �5.11� and the second equality is
written in terms of dimensionless variables  , Eq. �7.12�,
and b, Eq. �7.4�.

Equation �7.30� is symmetric with respect to the simulta-
neous change �→	−�, b→−b, i→−i,  �→− �; both
sides are even. This translates into the property ���� ,b�
=��

� �−� ,−b� for real �. The function P�� ,� , t� is single-
valued at the poles �=0 and �=	, only if

u��� = 0� = 0, u��� = 	� = 0. �7.32�

The latter equations establish the boundary conditions for the
differential equation, Eq. �7.30�. We also note that the nor-
malization condition �5.15� is satisfied for any function
u����.

Solving numerically the differential equation, Eq. �7.30�,
with the corresponding boundary conditions, Eq. �7.32�, we
obtain the transverse susceptibility, Eq. �7.28�, shown in
Figs. 5 and 6. Below we analyze several limiting cases.

In zero fixed magnetic field, b=0, we have the exact so-
lution of Eq. �7.30�:

u���� =
sin �

1 − i �/2
. �7.33�

This solution corresponds to the solution in the longitudinal
case, rotated by 90°, cf. Eq. �7.15�.

In strong fixed magnetic field, b�1, we need to consider
small angles ��1 /�b, therefore, we can approximate
cos ��1 in Eq. �7.30� and obtain
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u���� =
b + 2 − 2ih0�b

b + 2 − i �

sin � . �7.34�

The susceptibility in the limit b�1 is given by

��� ,b � 1� =
1 − 2ih0�

2b�b�1 − 2ih0�� − i �
. �7.35�

At  ��1,b we can disregard the terms in Eq. �7.30�
with derivatives. Moreover, the contribution to the suscepti-
bility, Eq. �7.28�, from the vicinity of �=0 and �=	 is sup-
pressed as sin2�. This observation allows us to write the
solution in the form

u���� = sin �
2 + 2ih0�b + b cos �

− i �

, �7.36�

Consequently, we obtain the following high frequency,
 ��1, asymptote for the susceptibility:

��� ,b� =
i

2� + 2h0�b��1 −
b coth b − 1

b2 �2ih0�b + 1�� .

�7.37�

Analogously to the previous subsection, we propose an
approximate expression for the susceptibility in response to
the transverse oscillating magnetic field:

��
app��� = ��

dc�b�
1 − 2iB0T0/�app

� �b�

1 − i�2B0 + ��T0/�app
� �b�

, �7.38�

with ��
dc��� given by Eq. �7.7�, and �app

� �b� found for any b
from the asymptotic behavior of ���� ,b� at  ��1,b:

�app
� �b� =

b2

b coth b − 1
− 1. �7.39�

Analogously to the case of the longitudinal susceptibility, Eq.
�7.38� approximates the numerical solution within a few per-
cent.

VIII. CONCLUSIONS

We have studied the slow dynamics of magnetization in a
small metallic particle �quantum dot�, where the ferromag-
netism has arisen as a consequence of Stoner instability. The
particle is connected to nonmagnetic electron reservoirs. A
finite bias is applied between the reservoirs, thus bringing the
whole electron system away from equilibrium. The exchange
of electrons between the reservoirs and the particle results in
the Gilbert damping3 of the magnetization dynamics and in a
temperature- and bias-driven Brownian motion of the direc-
tion of the particle magnetic moment. Analysis of magneti-
zation dynamics and transport properties of ferromagnetic
nanoparticles is commonly performed5,8–10,17 within the sto-
chastic Landau-Lifshitz-Gilbert �LLG� equation,2,3 which is
an analog of the Langevin equation written for a unit three-
dimensional vector.

We derived the stochastic LLG equation from a micro-
scopic starting point and established conditions under which
the description of the magnetization of a ferromagnetic me-
tallic particle by this equation is applicable. We concluded
that the applicability of the LLG equation for a ferromag-
netic particle is set by three independent criteria. �1� The
contact resistance should be low compared to the resistance
quantum, which is equivalent to Nch�1. Otherwise the noise
cannot be considered Gaussian. Each channel can be viewed
as an independent source of noise and only the contribution
of many channels results in the Gaussian noise by virtue of
the central limit theorem for Nch�1. �2� The system should
not be too close to the Stoner instability: the mean-field
value of the total spin S0

2�Nch. Otherwise, the fluctuations of
the absolute value of the magnetic moment become of the
order of its average. �3� S0

2�Teff /�1, where Teff
�max�T , �eV�� is the effective temperature of the system,
which is the energy scale of the electronic distribution func-
tion. Otherwise, the separation into slow �the direction of the
magnetization� and fast �the electron dynamics and the mag-
nitude of the magnetization� degrees of freedom is not pos-
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FIG. 5. �Color online� Plot of the real and imaginary parts of the
transverse susceptibility ��� ,b� as a function of the dimension-
less frequency  . Negative frequency corresponds to the opposite
sense of the circular polarization of the ac magnetic field in a plane,
perpendicular to the constant magnetic field with strength b. The
parameters of the three shown curves are chosen so that h0�b=2.
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FIG. 6. �Color online� Plot of the real and imaginary parts of the
transverse susceptibility ��� ,b� as a function of the strength b of
a constant magnetic field, shown for two values of frequency  and
two values of the “damping factor” h0�. Negative values of b cor-
responds to the opposite sense of the circular polarization of the ac
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field. The real part of the susceptibility exhibits a strong nonmono-
tonic behavior at weak magnetic fields.
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sible. However, this condition is redundant, since at
Teff!S0�1 the spin vanishes.

Under the above conditions, the dynamics of the magne-
tization is described in terms of the stochastic LLG equation
with the power of Langevin forces determined by the effec-
tive temperature of the system. The effective temperature is
the characteristic energy scale of the electronic distribution
function in the particle determined by a combination of the
temperature and the bias voltage. In fact, for a considered
here system with nonmagnetic contacts between nonmag-
netic reservoirs and a ferromagnetic particle the power of the
Langevin forces is proportional to the low-frequency noise
of total charge current through the particle. We further re-
duced the stochastic LLG equation to the Fokker-Planck
equation for a unit vector, corresponding to the direction of
the magnetization of the particle. The Fokker-Planck equa-
tion can be used to describe time evolution of the distribution
of the direction of magnetization in the presence of time-
dependent magnetic fields and voltage bias.

As an example of application of the Fokker-Planck equa-
tion for the magnetization, we have calculated the frequency-
dependent magnetic susceptibility of the particle in a con-
stant external magnetic field �i.e., linear response of the
magnetic moment to a small periodic modulation of the field,
relevant for ferromagnetic resonance measurements�. We
have not been able to obtain an explicit analytical expression
for the susceptibility at arbitrary value of the applied external
field and frequency; however, analysis of different limiting
cases has led us to a simple analytical expression which
gives a good agreement with the numerical solution of the
Fokker-Planck equation.
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APPENDIX A: FROM SPIN DENSITY MATRIX
TO FOKKER-PLANCK EQUATION

Here we show how the Fokker-Planck equation can be
simply derived in the model of a localized large spin S�1,
coupled to a fermionic bath. The Hamiltonian of the spin
reads as

ĤS = − 2B�t� · Ŝ − ĥ · Ŝ , �A1�

where Ŝ is the operator of the localized spin, 2B�t� is the
external classical magnetic field �the factor of 2 is introduced

to be consistent with the rest of the paper�, and ĥ is the
fluctuating magnetic field produced by the fermionic bath:

Ĥb = �
k�

�kĉk�
† ĉk�, ĥ = �

kk�

Jkk��
���

ĉk�
†

����

2
ĉk���. �A2�

Here the subscripts k and � at the fermionic creation and
annihilation operators ĉk�

† , ĉk� label the orbital states with

energies �k and the spin projections �= ↑ ,↓, respectively.
Jkk�=Jk�k

� are the matrix elements of the exchange coupling,
and �= ��x ,�y ,�z� is the vector of the 2�2 Pauli matrices.

The bath field correlator is given by

	ĥi�t�ĥj�t��
b = �ij�
kk�

�Jkk��
2

2

�1 − fk��1 + fk��
4

ei��k−�k���t−t��,

�A3�

where the time dependence is determined by the Hamiltonian

Ĥb, and the average is taken over the bath density matrix,
assumed to be stationary and nonmagnetic, so that

	ĉk�
† ĉk���
b = �kk�����

1 − fk

2
. �A4�

If the fermions are in equilibrium at temperature T and
chemical potential 
, we have fk=tanh���k−
� / �2T�
. If fk
= f��k�, the bath field correlator, Eq. �A3�, can be rewritten in
the frequency representation as

	ĥi�t�ĥj�0�
b = �ij� d�

2	
C���e−i�t, �A5a�

C��� =� d�J��,� + ���1 − f���
�1 + f�� + ��
 ,

�A5b�

J��,��� =
	

4 �
kk�

�Jkk��
2���k − �����k� − ��� . �A5c�

Note that in equilibrium

C�− �� = e−�/TC��� . �A6�

Generally, we can expand C��� at low frequencies,

C��� = 4JeffTeff + 2Jeff� + O��2� . �A7�

In equilibrium the effective temperature defined in this way
coincides with the real temperature due to property �A6�.

Let us assume the distribution function f��� to be a super-
position of two steps with two different chemical potentials,
corresponding to the bias V:

f��� =
1 − �1 − 2


2
tanh

�

2T
+

1 + �1 − 2


2
tanh

� + V

2T
,

�A8�

where the parameter 
�1 /2 simply parametrizes the rela-
tive magnitude of the two steps. If we neglect the energy
dependence of J�� ,��� on the energy scale of max�V ,T�, the
energy integration gives

C��� = J�2� + 2� coth
�

2T
+




2
�T�V,��� , �A9�

where �T�V ,�� is the function defined in Eq. �4.27�.40 Com-
parison to the low-frequency expansion, Eq. �A7�, gives
Jeff=J and Teff given by Eq. �4.30�.
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With the bath field correlator in our hands, we can follow
the standard route to the master equation for the density ma-
trix "̂�t� of the localized spin, where the bath degrees of
freedom have been traced out.19 Neglecting the terms O��2�
and higher in expansion �A7�, we arrive at the master equa-
tion in the quantum Brownian motion limit:

� "̂

�t
= i�2BiŜi, "̂
 − ieijk2JeffBi�Ŝj,�Ŝk, "̂�
 − 2JeffTeff�Ŝi,�Ŝi, "̂

 .

�A10�

Here �. . .
 stands for the commutator of two operators, and
�. . .� for the anticommutator. This master equation is not of
the Lindblad form and potentially may produce unphysical
results �see Ref. 38 for a discussion�. However, we will show
below that in the limit S�1 it reduces to the Fokker-Planck
equation, Eq. �5.10�.

To describe the quasiclassical dynamics of the spin, we
employ the spin coherent states.39 For an arbitrary unit vector
n one defines the coherent state �n
 as the state with the
largest value of the projection of the spin on the direction n,

i.e., �n · Ŝ��n
=S�n
. This definition does not fix the phase,
which can be arbitrary and n dependent, so that it can be
viewed as a gauge degree of freedom. We use the following
explicit definition in the standard basis �Sz
 of the eigenstates

of Ŝz:

�n
 = �
Sz=−S

S ��2S�!e−iSz�

��S − Sz� ! �S + Sz�!
�cos

�

2
�S+Sz�sin

�

2
�S−Sz

�Sz
 ,

�A11�

where � ,� are the spherical angles of the unit vector n. The
scalar product of coherent states,

	n1�n2
 = �1 + n1 · n2

2
�S

e2iS# � e−S�n1 − n2�2/4−iSnz��1−�2�,

�A12a�

# � arctan� cos��1 + �2�/2
cos��1 − �2�/2

tan
�1 − �2

2
� , �A12b�

tends to the angular � function as S→�. The unit operator
and the spin operator are represented as

�2S + 1�� d2n

4	
�n
	n� = 1̂, �A13a�

�2S + 1�� d2n

4	
n�n
	n� =

Ŝ

S + 1
. �A13b�

Also, it can be directly shown that

Ŝ�n
 =
n − nzez

1 − nz
2 S�n
 + in �

� �n

�n

. �A14�

The spin coherent states are used to construct the so-
called P representation for the density matrix:

"̂�t� =� d2nP�n,t��n
	n�, � d2nP�n,t� = 1. �A15�

In this representation we have

�Ŝ, "̂
 = − i� d2nn �
�P�n�

�n
�n
	n� , �A16a�

�Ŝ, "̂� = 2S� d2nnP�n��n
	n��1 + O�1

S
�� . �A16b�

The first relation follows from Eq. �A14�; the second one is
obtained by representing the spin operator as in Eq. �A13�
and using Eq. �A12�. As a result, we arrive at the Fokker-
Planck equation for the spin direction:

�P

�t
=

�

�n
· �− 2�n � B
P + 4SJeff�n � �n � B�
P�

+ 2JeffTeff
�2P

�n2 . �A17�

This equation corresponds to Eq. �5.10� if one associates
4SJeff↔1 / �h0�� and S↔h0 /�1. The latter is in agreement
with Eq. �3.15�.

APPENDIX B: LONGITUDINAL SUSCEPTIBILITY
AT LOW FREQUENCIES

We find the linear in frequency  �1 correction to the dc
susceptibility. For this purpose, we look for a solution to Eq.
�7.11� in the form

u���� = u�
�0���� + u�

�1���� , �B1�

where u�
�0���� is the solution of Eq. �7.11� at  =0 and

u�
�1����� . We choose

u�
�0���� =

1

b
− coth b + cos � , �B2�

since this form of u�
�0���� preserves the normalization condi-

tion �7.13�. This function can be found directly as a solution
of Eq. �7.11� with  =0 or as a variational derivative of
function P0���, defined in Eq. �7.3�, with respect to b.

The linear in  correction u�
�1���� is the solution to the

differential equation

�2u�
�1����

��2 +
cos � − b sin2 �

sin �

�u�
�1����
��

= − i u�
�0���� .

�B3�

From this equation, we can easily find

�u�
�1����
��

= −
i 

b sin �
�coth b − cos � −

e−b cos �

sinh b
� . �B4�

We notice that the solution to the latter equation will auto-
matically satisfy the boundary conditions, given by Eq.
�7.14�. Integrating Eq. �B4� once again, we obtain the fol-
lowing expression for function u�

�1����:
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u�
�1���� = C�b� −

i 

b
�

0

� �coth b − cos �� −
e−b cos ��

sinh b
� d��

sin ��
.

�B5�

Here the integration constant C�b� has to be chosen to satisfy
the normalization condition, Eq. �7.13�, which results in a
complicated expression for the final form of the function
u�

�1����.

To obtain function f ��b�, introduced in Eq. �7.21�, we have
to perform the final integration

f ��b� =
2	

 
�

0

	

u�
�1����P0���sin � cos �d� . �B6�

The result of the integration is shown in Fig. 4.
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